Package: cvsem 1.0.0

cvsem: SEM Model Comparison with K-Fold Cross-Validation

The goal of 'cvsem' is to provide functions that allow for comparing Structural Equation Models (SEM) using cross-validation. Users can specify multiple SEMs using 'lavaan' syntax. 'cvsem' computes the Kullback Leibler (KL) Divergence between 1) the model implied covariance matrix estimated from the training data and 2) the sample covariance matrix estimated from the test data described in Cudeck, Robert & Browne (1983) <doi:10.18637/jss.v048.i02>. The KL Divergence is computed for each of the specified SEMs allowing for the models to be compared based on their prediction errors.

Authors:Anna Wysocki [aut, cre], Danielle Siegel [aut], Cameron allen [aut], Philippe Rast [aut]

cvsem_1.0.0.tar.gz
cvsem_1.0.0.zip(r-4.5)cvsem_1.0.0.zip(r-4.4)cvsem_1.0.0.zip(r-4.3)
cvsem_1.0.0.tgz(r-4.5-any)cvsem_1.0.0.tgz(r-4.4-any)cvsem_1.0.0.tgz(r-4.3-any)
cvsem_1.0.0.tar.gz(r-4.5-noble)cvsem_1.0.0.tar.gz(r-4.4-noble)
cvsem_1.0.0.tgz(r-4.4-emscripten)cvsem_1.0.0.tgz(r-4.3-emscripten)
cvsem.pdf |cvsem.html
cvsem/json (API)

# Install 'cvsem' in R:
install.packages('cvsem', repos = c('https://annawysocki.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/annawysocki/cvsem/issues

On CRAN:

3.95 score 6 stars 3 scripts 236 downloads 2 exports 8 dependencies

Last updated 3 years agofrom:905604afbe. Checks:1 OK, 7 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 08 2025
R-4.5-winWARNINGFeb 08 2025
R-4.5-macWARNINGFeb 08 2025
R-4.5-linuxWARNINGFeb 08 2025
R-4.4-winWARNINGFeb 09 2025
R-4.4-macWARNINGFeb 08 2025
R-4.3-winWARNINGFeb 09 2025
R-4.3-macWARNINGFeb 08 2025

Exports:cvgathercvsem

Dependencies:lavaanMASSmnormtnumDerivpbivnormquadprogrbibutilsRdpack